
For latest information, PDF catalogs and operation manuals

TM Series Positioning Motors

<Applications>

Machining centers' ATC units, NC lathes' turrets, automatic loaders, pallet changers, constant feed devices, etc.

Features

Hydromechanical positioning

These positioning motors integrate Daikin's original hydromechanical rotary positioning system developed based on orbit motors known for low noise and high-torque at the low-speed range.

Integrated compact unit

All the components for the required mechanisms of rotation, deceleration, and rotary positioning are joined with no piping and integrated into one compact unit

Quick positioning

Adoption of a deceleration cam system and mechanical valves, in addition to quick response features, achieves appropriate speed reduction under the load conditions, enabling shockless stops in a short time without indexing errors.

High-accuracy positioning

The number of indexing positions can be selected from three options - 1 position, 2 positions or 3 positions over a full revolution - while the positioning cam groove can be selected from two options: highly accurate (±0.1°) groove V and groove R with backlash for supplementary positioning.

• Simple control & easy operation

Simple on/off control of solenoid valves achieves easy operation of the positioning motor.

Flexible feed pitch selection

The capability to set the feed pitch as required enables smooth multi-pitch feed

Nomenclature

	* *										
1	2	3	4	5	6	7	8	9	10	11	12

1 Model No.

TM: TM series positioning motor

2 Motor capacity

05: 54 cm²/rev

10: 96 cm²/rev

13: 129 cm²/rev

19: 184 cm²/rev

3 Flange

A: SAE A

B: SAE B

F: Flange piping

4 Shaft diameter

S: φ20.0 (key width: 6.00 mm) *¹ M: φ25.0 (key width: 7.00 mm) I: φ25.4 (key width: 6.35 mm)

5 Number of indexing positions

- 1: One indexing position over a full revolution
- 2: Two indexing positions over a full revolution
- 3: Three indexing positions over a full revolution

6 Cam groove

R: Groove R (Supplementary positioning, with backlash)

V: Groove V (Sharp positioning with accuracy: ±0.1°)

7 Control port

- 0: None
- 2: With UN, CL
- 3: With UN, CL, CO

8 Operating pressure

1: $3.5 \text{ MPa } \{ 35 \text{ kgf/cm}^2 \} \text{ maximum}$

2: 3.6 to 5 MPa {36 to 50 kgf/cm²}

3: 5.1 to 7 MPa {51 to 70 kgf/cm²}

9 Solenoid valve type *2

Code	For rotation	For pin disengagement
AT	KSO-G02-2CA-30-EN	KSO-G02-9CA-30-EN
AF	KSO-G02-2CA-30-CE	KSO-G02-9CA-30-CE
BT	KSO-G02-2CB-30-N	KSO-G02-9CB-30-N
PT	KSO-G02-2CP-30-EN	KSO-G02-9CP-30-EN
XT	LS-G02-2CA-30-EN	LS-G02-9CA-30-EN
XF	LS-G02-2CA-30-CE	LS-G02-9CA-30-CE

10 CL port throttle code *3

0: φ1.0 1: φ2.0

2: \$\phi1.2 3: \$\phi2.2\$

4: \$\phi 1.4 5: \$\phi 2.4\$

6: \$1.6

8: \$\phi1.8 N: Not featured

11 Proximity switch

K: Equipped

N: None

S: None (with detection rod)

12 Design No. (The design No. is subject to change.)

Note: *1 Shaft diameter S is only applicable to TM05.

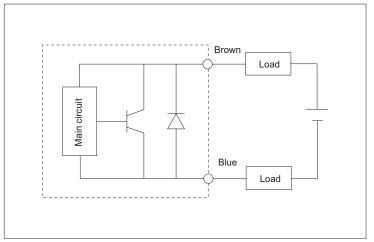
*2 Refer to KSO-G02 on Page G-16 or LS-G02 on Page G-4 for the solenoid specifications.

*3 CL port throttle codes 0 to 8 are only applicable when the setting for 7 Control port is 2 or 3. Only "N" is selectable when the control port code "0" (no control port) is selected.

Specifications

	Model No.		TM05			TM10			TM13			TM19)
Motor capacity	cm²/rev		54			96			129		184		
Maximum load	kg·m² (GD2: N·m² {kgf·m²})		0.125 (5 {0.5})		0.50 (20 {2})		0.75 (30 {3})			1.25 (50 {5})		1 (40 {4})	
Number of indexing positions	rev ⁻¹	1	2	3	1	2	3	1	2	3	1	2	3
Maximum rotational speed	min ⁻¹	20	00	150	20	00	150	150			100		
Required flow rate	L/min	•	13 10		22 17		22		21				
Indexing time	S *3	0.50	0.35	0.30	0.70	0.50	0.40	0.80	0.60	0.50	1.00	0.70	0.60
Deceleration signal output angle		120° sid	near de	100° near side	120° near side 100° near side		120° sid		100° near side	90° near side			
Rated pressure	MPa {kgf/cm²}			1st pa	attern: 3.5 {35}, 2nd pattern: 5 {50}, 3rd pattern: 7 {70}								
Permissible back pressure	MPa {kgf/cm²}				1 {10}								
Indexing accuracy					±0.1								
Backlash						Groove	e R: ±0.	1°, Groc	ve V: 0	0			
Radial load	kN {kgf}	2.25 {225}			4.5 {450}								
Thrust load	kN {kgf}	2.25 {225}		3.5 {350}									
Minimum operating pressure	MPa {kgf/cm²}						1.5	{15}					
Paint color					Bla	ck (Mui	nsell co	de N1.5	, semig	loss)			

Note: *3 The indexing time indicates the value at a pressure of 3.5 MPa {35 kgf/cm²}


Specifications of proximity switch

Manufacturer: Azbil Corporation Model: FL2R-4J6SD

ltem	Specifications	
nem	Specifications	
Detection method	High-frequency oscillation	
Rated operation distance	4 ±0.4 mm	
Rated power supply voltage	Common to DC 12 V and DC 24 V	
Operating voltage range	DC 10 to 30 V	
Leak current	1 mA maximum	
Operation configuration	Normally open Loaded (operating) at positioning	
Output configration	DC 2-line type Transistor output	
Control output	Switching current: 4 to 100 mA Residual voltage: 3.3 V maximum	
Withstand voltage	AC 500 V, 1 minute	
Insulation resistance	50 MΩ minimum (DC 500 VM)	
Response frequency	1.5 kHz minimum	
Operating ambient temperature	–25 to 70°C	
Dust-/water-proof property	IEC 529 IP67	

Output section circuit diagram

Proximity switch circuit diagram

Note: The load shown in the output section circuit diagram can be connected in either the positive or negative polarity of the power supply.

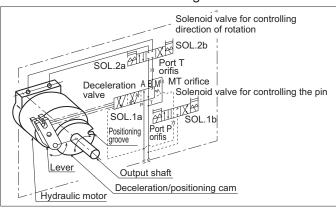
For latest information, PDF catalogs and operation manuals

Handling

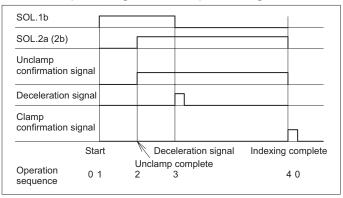
Electric wiring and operation

Soleno	id valve	SOL No.	Operation at solenoid excitation
For pin engagement/	KSO-G02-9CA-30-EN	SOL.1b	Positioning cancelation, preparing for rotation
disengagement	LS-G02-9CA-30-EN	SOL.1a	Deceleration start \rightarrow positioning complete
For rotation	KSO-G02-2CA-30-EN	SOL.2a	Counterclockwise rotation (viewed from the end of motor's output shaft)
Forfoldion	LS-G02-2CA-30-EN	SOL.2b	Clockwise rotation (viewed from the end of motor's output shaft)

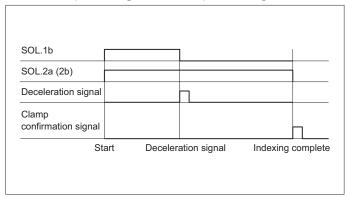
Operation description


• The table below shows on/off timing of solenoid valve and status of rotation and of main machine.

ullet Operation sequence (0 o 1 o 2 o 3 o 4 o 0) < Example: When using ports UN and CL for a lathe>


Solenoid valve	For pin operation		For rotation	Turret	For rotation	Positional relationship between	Mechanical valve symbol
Operation sequence	1a	1b	2a or 2b	Turret	For Totation	cam and pin	Mechanical valve symbol
0	OFF	OFF	OFF	Clamp	Stop	Within the positioning groove	$P \rightarrow A B \rightarrow T M block$
1	1	ON	1	Unclamp	Preparing	Leaving the positioning groove	$P \to B \ M \to T \ A \to T$
2	1	1	ON	1	Start	↑	↑
3	ON	OFF	↑	1	Deceleration	Pin coming onto the cam and decelerating Approaching the positioning groove (target position) along cam shape	$\begin{array}{c} P \to B \ M \to T \ A \to T \\ Area \ of \ opening \ being \ reduced \\ in \ proportion \ to \ the \ decelerating \\ curve \ (meter-out) \end{array}$
4	OFF	1	1	Clamp	Stop	Entering the positioning groove	$P \rightarrow A \ B \rightarrow T \ M \ block$
0	1	1	OFF	1	1	Within the positioning groove	1

- The on/off operation of the solenoid valve for pin operation provides the pilot pressure to move the mechanical valve's spool. At deceleration, the spool is returned by the lever following the profile of the cam mechanism.
- The spool of the mechanical valve is connected to the pin by the lever, so once the pin comes onto the cam the spool moves along the cam geometry and reduces the opening area.


Structure diagram

Example timing chart for 2-port configuration

Example timing chart for 3-port configuration

Deceleration signal:

Signal emitted at reduction signal output angle from an encoder or another device on the main machine (SOL.1b: OFF, SOL.1a: ON)

Clamp confirmation signal: Clamp signal from the proximity switch of a curvic coupling or another device on the main machine (This signal is not from the optional proximity switch.)

Handling of the control ports

The positioning motor is provided with control ports to operate a hydraulic cylinder (for operating curvic couplings, magazine indexing, etc.). The port configuration can be selected from two options: 2-port (CL, UN) and 3-port (CL, UN, CO). The following figures show an example application of each type.

O 2-port (CL, UN)

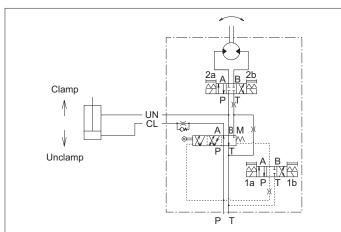
Used to control the cylinder for magazine indexing, for example.

[Connection] Port CL: Clamp side Port UN: Unclamp side

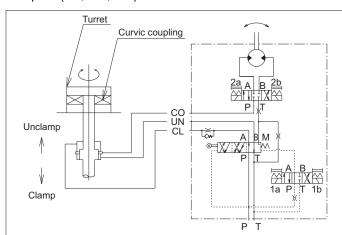
SOL.1b and SOL.2a: Simultaneous excitation not possible
Be sure to excite SOL.2a (2b) after confirming completion
of the unclamping operation, otherwise the motor starts to
rotate while carrying out the unclamping.

O 3-port (CL, UN, CO)

Used for interlocked cylinders such as for curvic couplings.


[Connection] Port CL: Clamp side

Port UN: Unclamp side Port CO: Common side


SOL.1b and SOL.2a: Simultaneous excitation possible

Simultaneous excitation will not cause a problem because the motor does not rotate (fluid is not supplied at port CO) unless the unclamping operation is completed.

2-port (CL, UN)

3-port (CL, UN, CO)

For latest information, PDF catalogs and operation manuals

If operation fails

More than 90% of operation failures are caused by the fixed throttle becoming clogged with contamination. (See the sectional structural diagram for the location of orifice.)

Motor not rotating or rotating slowly

- O Clean each orifice with clean oil and blow it with compressed air. (Do not wrap orifices with sealing tape when reassembling.)
- Replace the solenoid valve for rotation (spool type/operation type: 2C).

Indexing error

- O Clean each orifice with clean oil and blow it with compressed air. (Do not wrap orifices with sealing tape when reassembling.)
- O Replace the solenoid valve for pin engagement/disengagement (spool type/operation type: 9C).

Handling

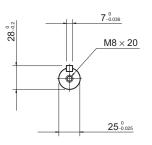
Installation

- O Avoid crosswise drive of a belt, chain, etc. because it will cause large radial loads. Always drive the load via bearing support by using pillow blocks, for example.
- O When driving a motor with a spur gear fitted at the end of the shaft, keep the load within 4.5 kN {450 kgf} (2.25 kN {225 kgf} for TM05) including the radial load.
 - If the load exceeds this limit, drive it via bearing support by using pillow blocks, for example.
- O Ensure that the eccentricity of the drive shaft and motor shaft is no greater than 0.05 mm (TIR).
- O Tighten the screw in the M8 tapped hole (depth of 20 mm) at the shaft end within a tightening torque of 2.5 to 3 N·m {250 to 300 kgf·cm}.
- O Before replacing the motor, be sure to stop the hydraulic supply and check that there is no remaining pressure within the hydraulic circuit.
 - Never disassemble the motor.
- O Never use damaged hoses or old hoses for piping. Use hoses with sufficient pressure endurance range.
- When mounting the motor, securely fix it to the flange or base while being careful not to drop it and avoiding subjecting it to any impact with a hammer, etc.
 - In addition, do not use the motor as a step.
- O When connecting fittings on the motor, tighten them with an appropriate torque. Tightening them with an excessive torque may cause breakage of the block or other parts.
- O Set the key on the motor shaft without any looseness. Ensure that the clearance between the key and the side wall of the key groove is no greater than 0.03 mm and securely fix the top part of the key using a screw or other means.
- O Do not apply any load exceeding the permissible radial load (4.5 kN {450 kgf}) or the permissible thrust load (3.5 kN {350 kgf}) on the motor shaft. Do not hit the motor with a hammer, especially on the motor shaft. It will cause fluid leakage from the shaft sealing or damage to other parts.
- When using the front mount type, take care not to trap the O-ring.
- O During piping work, take necessary measures to prevent dust or cutting chips getting inside the piping or motor. Flush pipes before using them in piping work.
- When connecting the motor directly to a load part, accurate centering is required.
- O Do not expose valves and sensors to water or impacts.
- O Do not pull the detection rod or proximity plate with excessive force, or bend them.
- Be careful to connect motor pipes correctly.
- O Do not use the products in an environment susceptible to rust.

Hydraulic oil

- O Use a petroleum-based hydraulic fluid. Do not use other types of hydraulic fluid or mix different types of hydraulic fluid. Use hydraulic fluid within parameters where all of its specification conditions are satisfied at the same time.
- O Positioning motors are not designed to handle combustible fluids or hazardous fluids.
 - If such fluids are used and leak, the potential hazards include fire, disease, and environmental contamination.
 - Recommended hydraulic fluid: Fluid equivalent to ISO VG32 to 56
 - Recommended viscosity range: 15 to 400 mm²/s {cSt}
 - Permissible fluid temperate range: 0 to 60°C
 - Contamination: Within NAS class 12 (Use a line filter with a filtration accuracy of 25 μ or better.)

Running


- O Do not touch the rotating part while the motor is rotating because it is very dangerous. Be sure to provide a guard for the rotating part.
- O If an abnormal pressure that exceeds the maximum operating pressure of the motor can be expected, install a safety valve together with the motor and set it to lower than the maximum operating pressure. Otherwise, the seal may be damaged and fluid may leak.
- O Do not touch surface of the motor while it is running. You may sustain burns.
- O If an abnormality such as fluid leakage, lowered torque, increased noise, or lowered speed is observed, stop operation immediately and take the necessary steps to prevent secondary accidents.
- O Do not operate the motor only with a key attached. Otherwise the key may fly out.
- O Maintain the back pressure at no greater than 1 MPa {10 kgf/cm²}.

Others

- O Use the motor in compliance with the specification conditions stated in the brochure or drawings.
- O Products modified by the customer are not covered by the warranty and Daikin will accept no responsibility for them.

External dimension diagram

$TM \times {}^{A}_{B} \times - \times \times 0 \times - \times T \times N-20$

Shaft diameter M

28.2 -0.2				6.35-8.00 M8 × 20
	_	-	-	25.4 -0.025

Shaft diameter I

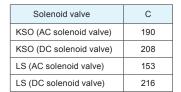
Type A flange

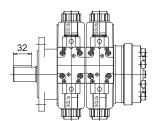
Model No.	Α	В	Mass kg
TM05	179.8	34.8	19.5
TM10	183.9	38.9	19.9
TM13	188.0	43.0	20.2
TM19	194.8	49.8	20.6

Type B flange

	•		
Model No.	А	В	Mass kg
TM05	175.4	34.8	19.5
TM10	179.5	38.9	20.1
TM13	183.6	43.0	20.4
TM19	190.4	49.8	20.8

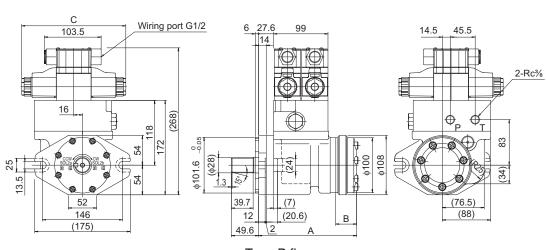
45.5

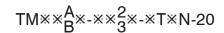

(76.5)

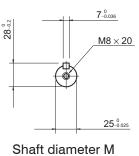

(88)

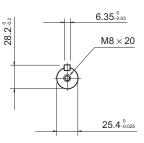
2-Rc3/8

83


(34)


Type A flange

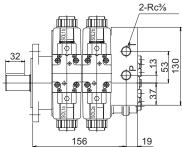



Type B flange

For latest information, PDF catalogs and operation manuals

External dimension diagram

Shaft diameter I

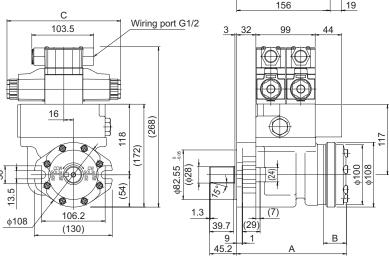

Solenoid valve C

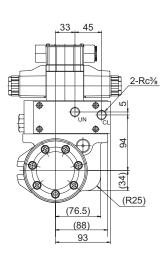
KSO (AC solenoid valve) 190

KSO (DC solenoid valve) 208

LS (AC solenoid valve) 153

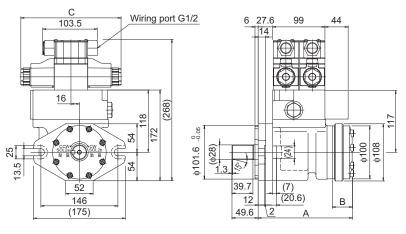
LS (DC solenoid valve) 216

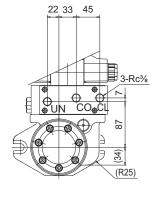



Type A flange

Model No.	А	В	Mass kg
TM05	179.8	34.8	21.7
TM10	183.9	38.9	22.0
TM13	188.0	43.0	22.3
TM19	194.8	49.8	22.7

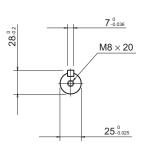
Type B flange


	•		
Model No.	А	В	Mass kg
TM05	175.4	34.8	21.6
TM10	179.5	38.9	21.9
TM13	183.6	43.0	22.2
TM19	190.4	49.8	22.6

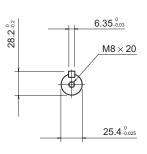


Type A flange

2-port specifications



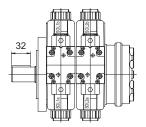
Type B flange

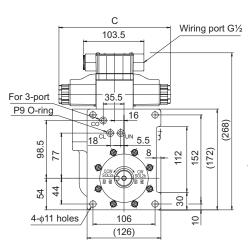

3-port specifications

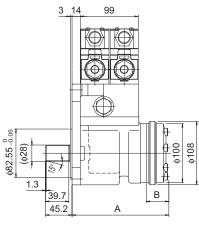
External dimension diagram

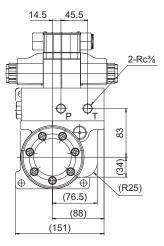
$$\mathsf{TM} {\times} \mathsf{F} {\times} {-} {\times} \overset{0}{\underset{3}{\times}} {-} {\times} \mathsf{T} {\times} \mathsf{N} {-} \mathsf{20}$$

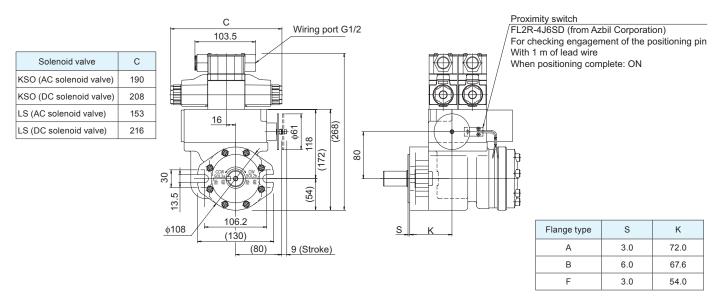

Shaft diameter M

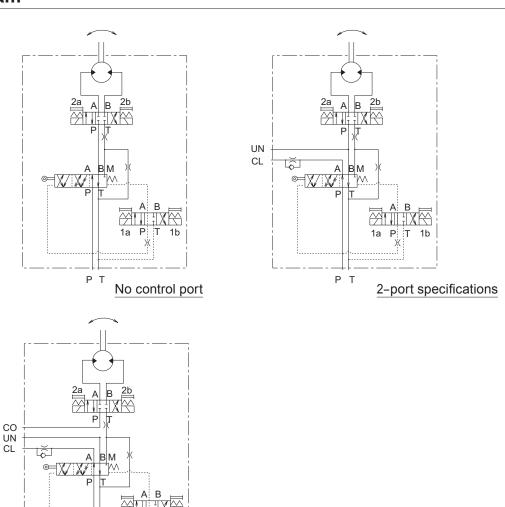



Shaft diameter I

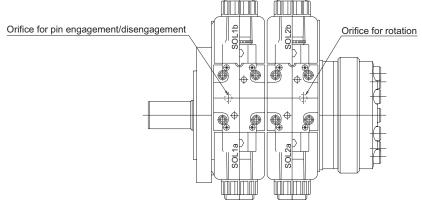

Type F flange

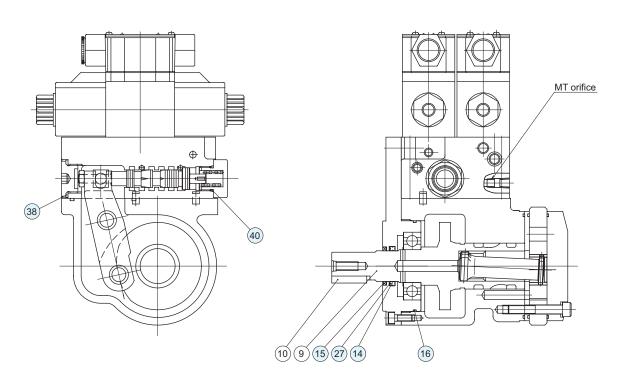

Model No.	Α	В	Mass kg
TM05	161.8	34.8	19.8
TM10	166.9	38.9	20.1
TM13	170.0	43.0	20.4
TM19	176.8	49.8	20.8




Type F flange

External dimension diagram


TM****-*** with K-20 proximity switch



Circuit diagram

3-port specifications

Sealing part table

Part No.	Name	Quantity	Part specifications
14	X-ring	1	Seal kit (PP01632-01)
15	Dust seal	1	
16	O-ring	1	
27	Backup ring	1	
38	Sealing washer	1	LBF060345E
40	O-ring	1	AS568-910